Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nucleic Acids Res ; 49(15): 8505-8519, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1328926

ABSTRACT

The transcriptomic diversity of cell types in the human body can be analysed in unprecedented detail using single cell (SC) technologies. Unsupervised clustering of SC transcriptomes, which is the default technique for defining cell types, is prone to group cells by technical, rather than biological, variation. Compared to de-novo (unsupervised) clustering, we demonstrate using multiple benchmarks that supervised clustering, which uses reference transcriptomes as a guide, is robust to batch effects and data quality artifacts. Here, we present RCA2, the first algorithm to combine reference projection (batch effect robustness) with graph-based clustering (scalability). In addition, RCA2 provides a user-friendly framework incorporating multiple commonly used downstream analysis modules. RCA2 also provides new reference panels for human and mouse and supports generation of custom panels. Furthermore, RCA2 facilitates cell type-specific QC, which is essential for accurate clustering of data from heterogeneous tissues. We demonstrate the advantages of RCA2 on SC data from human bone marrow, healthy PBMCs and PBMCs from COVID-19 patients. Scalable supervised clustering methods such as RCA2 will facilitate unified analysis of cohort-scale SC datasets.


Subject(s)
Algorithms , Cluster Analysis , RNA, Small Cytoplasmic/genetics , RNA-Seq/methods , Single-Cell Analysis/methods , Animals , Arthritis, Rheumatoid/genetics , Bone Marrow Cells/metabolism , COVID-19/blood , COVID-19/pathology , Cohort Studies , Datasets as Topic , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Mice , Organ Specificity , Quality Control , RNA-Seq/standards , Single-Cell Analysis/standards , Transcriptome
3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Article in English | MEDLINE | ID: covidwho-1232098

ABSTRACT

Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.


Subject(s)
Aging/genetics , COVID-19/genetics , Cell Lineage/genetics , Melanoma/genetics , RNA, Small Cytoplasmic/genetics , Skin Neoplasms/genetics , Aging/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/virology , Brain/cytology , Brain/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cell Lineage/immunology , Cytokines/genetics , Cytokines/immunology , Datasets as Topic , Dendritic Cells/immunology , Dendritic Cells/virology , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Melanoma/immunology , Melanoma/pathology , Monocytes/immunology , Monocytes/virology , Phenotype , RNA, Small Cytoplasmic/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Single-Cell Analysis/methods , Skin Neoplasms/immunology , Skin Neoplasms/pathology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Transcriptome
4.
Int J Environ Res Public Health ; 18(1)2021 01 02.
Article in English | MEDLINE | ID: covidwho-1011538

ABSTRACT

COVID-19 patients always develop multiple organ dysfunction syndromes other than lungs, suggesting the novel virus SARS-CoV-2 also invades other organs. Therefore, studying the viral susceptibility of other organs is important for a deeper understanding of viral pathogenesis. Angiotensin-converting enzyme II (ACE2) is the receptor protein of SARS-CoV-2, and TMPRSS2 promotes virus proliferation and transmission. We investigated the ACE2 and TMPRSS2 expression levels of cell types from 31 organs to evaluate the risk of viral infection using single-cell RNA sequencing (scRNA-seq) data. For the first time, we found that the gall bladder and fallopian tube are vulnerable to SARS-CoV-2 infection. Besides, the nose, heart, small intestine, large intestine, esophagus, brain, testis, and kidney are also identified to be high-risk organs with high expression levels of ACE2 and TMPRSS2. Moreover, the susceptible organs are grouped into three risk levels based on the ACE2 and TMPRSS2 expression. As a result, the respiratory system, digestive system, and urinary system are at the top-risk level for SARS-CoV-2 infection. This study provides evidence for SARS-CoV-2 infection in the human nervous system, digestive system, reproductive system, respiratory system, circulatory system, and urinary system using scRNA-seq data, which helps in the clinical diagnosis and treatment of patients.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Predisposition to Disease , RNA, Small Cytoplasmic/genetics , Serine Endopeptidases/genetics , Female , Gene Expression Profiling , Humans , Male , Single-Cell Analysis
5.
Cells ; 9(4)2020 04 09.
Article in English | MEDLINE | ID: covidwho-45956

ABSTRACT

In December 2019, a novel coronavirus (SARS-CoV-2) was identified in COVID-19 patients in Wuhan, Hubei Province, China. SARS-CoV-2 shares both high sequence similarity and the use of the same cell entry receptor, angiotensin-converting enzyme 2 (ACE2), with severe acute respiratory syndrome coronavirus (SARS-CoV). Several studies have provided bioinformatic evidence of potential routes of SARS-CoV-2 infection in respiratory, cardiovascular, digestive and urinary systems. However, whether the reproductive system is a potential target of SARS-CoV-2 infection has not yet been determined. Here, we investigate the expression pattern of ACE2 in adult human testes at the level of single-cell transcriptomes. The results indicate that ACE2 is predominantly enriched in spermatogonia and Leydig and Sertoli cells. Gene Set Enrichment Analysis (GSEA) indicates that Gene Ontology (GO) categories associated with viral reproduction and transmission are highly enriched in ACE2-positive spermatogonia, while male gamete generation related terms are downregulated. Cell-cell junction and immunity-related GO terms are increased in ACE2-positive Leydig and Sertoli cells, but mitochondria and reproduction-related GO terms are decreased. These findings provide evidence that the human testis is a potential target of SARS-CoV-2 infection, which may have significant impact on our understanding of the pathophysiology of this rapidly spreading disease.


Subject(s)
Coronavirus Infections/transmission , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/transmission , Receptors, Virus/genetics , Receptors, Virus/metabolism , Testis/metabolism , Testis/virology , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/virology , Gene Expression Profiling , Gene Expression Regulation , Humans , Male , Pandemics , Pneumonia, Viral/virology , RNA, Small Cytoplasmic/chemistry , RNA, Small Cytoplasmic/genetics , Testis/cytology , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL